Scholarship Skills 2020
 Revise Mathematics

Exercise due Monday, $3^{\text {rd }}$ February 2020

Apply what you've learned about writing mathematics to rewrite this proof. Don't be afraid to rewrite it, rather than tinker about with it in small ways. The $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ source for this proof is on the web site, so you can edit it to create your own version.

The Largest Prime

Suppose that there were a largest prime number p_{i}. Then consider the product $\prod_{j=0}^{p_{i}-1} p_{i}-j$. Then $\left(\prod_{j=0}^{p_{i}-1} p_{i}-j\right)+1$ cannot be divided evenly by any of the numbers up to $p_{i}, 2,3,4, \ldots, p_{i}$ because each of these divides the left factor evenly, but not the right factor, hence not their sum. (Recall that if a_{1} divides a_{2} and $a_{2}=a_{3}+a_{4}$ then if a_{1} divides a_{3}, it will also divide a_{4}.) Since we are assuming p_{i} is the largest prime, $\left(\prod_{j=0}^{p_{i}-1} p_{i}-j\right)+1$ can have no prime factors greater than p_{i}, hence $\left(\prod_{j=0}^{p_{i}-1} p_{i}-j\right)+1$ is a prime, and it is greater than p_{i}, since $\prod_{j=0}^{p_{i}-1} p_{i}-j \geq p_{i}$. This contradicts the maximality of p_{i}. Hence the assumption that p_{i} is the largest prime must be false, and so there is no largest prime.

