Scholarship Skills 2020 Revise Mathematics Exercise due Monday, 3rd February 2020

Apply what you've learned about writing mathematics to rewrite this proof. Don't be afraid to *rewrite* it, rather than tinker about with it in small ways. The I_{EX} source for this proof is on the web site, so you can edit it to create your own version.

The Largest Prime

Suppose that there were a largest prime number p_i . Then consider the product $\prod_{j=0}^{p_i-1} p_i - j$. Then $\left(\prod_{j=0}^{p_i-1} p_i - j\right) + 1$ cannot be divided evenly by any of the numbers up to p_i , 2, 3, 4, ..., p_i because each of these divides the left factor evenly, but not the right factor, hence not their sum. (Recall that if a_1 divides a_2 and $a_2 = a_3 + a_4$ then if a_1 divides a_3 , it will also divide a_4 .) Since we are assuming p_i is the largest prime, $\left(\prod_{j=0}^{p_i-1} p_i - j\right) + 1$ can have no prime factors greater than p_i , hence $\left(\prod_{j=0}^{p_i-1} p_i - j\right) + 1$ is a prime, and it is greater than p_i , since $\prod_{j=0}^{p_i-1} p_i - j \ge p_i$. This contradicts the maximality of p_i . Hence the assumption that p_i is the largest prime must be false, and so there is no largest prime.