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Formal Languages 

1. Context free languages provide a convenient 
notation for recursive description of languages.  
 

2. The original goal of formalizing the structure of 
natural languages is still elusive, but CFGs are 
now the universally accepted formalism for 
definition of (the syntax of) programming 
languages.  
 

3. Writing parsers has become an almost fully 
automated process thanks to this theory.  



A Simple Grammar for English  
Example taken from Floyd & Beigel.  

<Sentence> → <Subject> <Predicate> 

<Subject> → <Pronoun1> | <Pronoun2> 

<Pronoun1> → I | we | you | he | she | it | they 

<Noun Phrase> → <Simple Noun Phrase> | <Article> <Noun Phrase> 

<Article> → a | an | the 

<Simple Noun Phrase> → <Noun> | <Adjective> <Simple Noun Phrase> 

<Predicate> → <Verb> | <Verb> <Object> 

<Object> → <Pronoun2> | <Noun Phrase> 

<Pronoun2> → me | us | you | him | her | it | them 

<Noun> → . . .  

<Verb> → . . . 

1. Each rule is called a production 
2. lhs  →  lhs        lhs is a symbol, rhs is a string of symbols 

3. Variable (or non-terminal) < … > 
4. Symbol (or terminal)   bold 



Example 
Derive the sentence “She drives a shiny black car”  from these 

rules.  
sentence 

subject predicate 

pronoun1 

She 

verb object 

drives 

Noun phrase 

adjective Simple Noun phrase 

adjective Simple noun phrase 

Simple Noun phrase article 

a shiny black car 

Noun 



Derivation rules 

1. Write down the start symbol (lhs of the first 
rule, unless otherwise stated) 

 
2. Find a variable, v, and a corresponding 

rule where:  v → rhs 
 

3. Replace the variable with the string rhs 
 

4. Repeat, starting at 2. until no more 
variables remain. 



Derivation 

<sentence> ⇒ 
<subject> <predicate> ⇒ 
<pronoun> <predicate> ⇒ 
She <predicate> ⇒ 
She <verb> <object> ⇒ 
She drives <object> ⇒ 
She drives <simple noun phrase> ⇒ 
She drives <article>  <noun phrase> ⇒ 
She drives a <noun phrase> ⇒ 
She drives a <adjective> <noun phrase> ⇒ 
She drives a shiny <noun phrase> ⇒ 
She drives a shiny <adjective> <simple noun phrase> ⇒ 
She drives a shiny black <simple noun phrase> ⇒ 
She drives a shiny black <noun> ⇒ 
She drives a shiny black car  
 
 

I Have underlined 
the variable I will 
replace in the next 
step. 



A Grammar for Expressions  

<Expression> → <Term> | <Expression> + <Term> 

<Term> → <Factor> | <Term> * <Factor> 

<Factor> → <Identifer> | ( <Expression> ) 

<Identifier> → x | y | z | … 

In class exercise: Derive 

• x + ( y * 3) 

• x + z * w + q 



Definition of Context-Free-Grammars  

A CFG is a quadruple G= (V,Σ,R,S), where 
  

– V is a finite set of variables (nonterminals, 
syntactic categories) 
 

–  Σ is a finite set of terminals 
 

– R is a finite set of productions -- rules of the 
form X→a,  where   X∈V  and   a∈(V ∪ Σ)* 

 
– S, the start symbol, is an element of V 

 
Vertical bar (|), as used in the examples on the previous slide, is 

used to denote a set of  several productions (with the same lhs).  
 



Example 

V = {<Expression>, <Term>, <Factor>, <Identifier>} 
Σ = {+, *, (, ), x, y, z, …} 
R = { 

<Expression> → <Term>  
<Expression> → <Expression> + <Term> 
<Term>  → <Factor>  
<Term>  → <Term> * <Factor> 
<Factor>  → <Identifer>  
<Factor>  → ( <Expression> ) 
<Identifier>  → x  
<Identifier>  → y  
<Identifier>  → z  
<Identifier>  →  … 

 } 
S = <Expression> 

<Expression> → <Term> | <Expression> + <Term> 

<Term> → <Factor> | <Term> * <Factor> 

<Factor> → <Identifer> | ( <Expression> ) 

<Identifier> → x | y | z | … 



Notational Conventions 

a,b,c, …  (lower case, beginning of alphabet) 
are concrete terminals;  

 
u,v,w,x,y,z (lower case, end of alphabet) are 

for strings of terminals 
 
α,β,γ, …    (Greek letters) are for strings over 

(T ∪ V) (sentential forms) 
 
A,B,C, … (capitals, beginning of alphabet) are 

for variables (for non-terminals). 
 
X,Y,Z are for variables standing for terminals. 
 



Short-hand 

Note. We often abbreviate a context free grammar, 
such as: 

G2 = ( V={S}, 
      Σ={(,)},  
      R={ S → ε, S → SS, S → (S) }, 
      S=S} 
By giving just its productions 
S → ε | SS |(S) 
 
And by using the following conventions.  

1) The start symbol is the lhs of the first production.  
2) Multiple production for the same lhs non-terminal can be 

grouped together by using vertical bar ( | )  
3) Non-terminals are capitalized.  
4) Terminal-symbols are lower case or non-alphabetic. 



Definitions 
The single-step derivation relation ⇒ on (V∪ T)* is defined 

by: 
 
1. α ⇒ β iff  β  is obtained from α by replacing an 

occurrence of the lhs of a production with its rhs. That 
is, α'Aα'' ⇒ α'γα''  is true iff  A → γ  is a production. We 
say α'Aα''  yields  α'γα''  
 

2. We write  α ⇒∗ β when β can be obtained from α 
through a sequence of several (possibly zero) derivation 
steps.  

 

3. The language of the CFG , G, is the set 
 L(G) = {w∈T* | S ⇒∗ w}   (where S is the start symbol of G) 

  

1. Context-free languages are languages of the form L(G)  



Example 1 

The familiar non-regular language  
       L = { akbk | k ≥ 0 } 
is context-free.  

 

The grammar G1 for it is given by T={a,b}, V={S}, 
and productions:    
1. S → Λ  
2. S → a S b 

  

Here is a derivation showing a3b3∈ L(G): 
S ⇒2 aSb ⇒2 aaSbb ⇒2 aaaSbbb ⇒1 aaabbb 
 
(Note: we sometimes label the arrow with a subscript which tells the 

production used to enable the transformation) 



Example 1 continued 

Note, however, that the fact L=L(G1) is not totally 
obvious. We need to prove set inclusion both 
ways. 

 
To prove L ⊆ L(G1) we must show that there exists 

a derivation for every string akbk; this is done by 
induction on k.  

 
For the converse, L(G1) ⊆ L, we need to show that 

if S ⇒∗ w and w∈T*, then w∈ L. This is done by 
induction on the length of derivation of w.  

 
 



Example 2 

The language of balanced parentheses is 
context-free. It is generated by the 
following grammar:  

    G2 = ( V={S}, 
          Σ={(,)},  
          R={ S → ε | SS |(S)}, 
          S=S} 
 

  

 



Example 3 

Consider the grammar: 
S →  AS | ε 
A → 0A1  | A1  | 01 
 
The derivation: 
S⇒ AS ⇒ A1S ⇒ 011S ⇒ 011AS ⇒ 

0110A1S ⇒ 0110011S ⇒ 0110011 
 
shows that 0110011 ∈ L(G3).  
 



Example 3 notes 

The language L(G3) consists of strings  
w∈{0,1}*   such that:  

P(w):  Either w=ε, or w begins with 0, and 
every block of 0's in w is followed by at 
least as many 1's 

    
Again, the proof that G3 generates all and 

only strings that satisfy P(w) is not 
obvious. It requires a two-part inductive 
proof. 

 



Leftmost and Rightmost Derivations  

The same string w usually has many possible 
derivations S ≡ a0⇒a1⇒a2⇒ … ⇒ an ≡ w 

 

We call a derivation leftmost if in every step 
ai⇒ai+1, it is the first (leftmost) variable in ai$ 
that is being replaced with the rhs of a 
production. Similarly, in a rightmost derivation, it 
is always the last variable that gets replaced.  

  

The above derivation of the string 0110011 in the 
grammar G3 is leftmost. Here is a rightmost 
derivation of the same string: 

 

S ⇒ AS ⇒  AAS ⇒ AA ⇒ A0A1 ⇒ A0011 ⇒ 
A10011 ⇒ 0110011 

S →  AS | ε 
A → 0A1  | A1  | 01 



Facts 

Every Regular Language is also a Context 
Free Language 

 
How might we prove this? 

Choose one of the many specifications for 
regular languages 

Show that every instance of that kind of 
specification has a total mapping into a 
Context Free Grammar 

 

What is an appropriate choice? 



Designing  CFGs 

Break the language into simpler (disjoint) 
parts with Grammars  A B C .  Then put 
them together  S → StartA | StartB | StartC 

 

If a Language fragment is Regular construct 
a DFA or RE, use these to guide you. 

Infinite languages use rules like    
R → a R 
R → R b 

Languages with linked parts use rules like  
R → B x B 
R → x R x 

 



In Class Exercise 

Map the Haskell Regular Expression 
datatype into a Context Free language. 

 
data RegExp a 

  = Lambda                         -- the empty string "" 

  | Empty                          -- the empty set 

  | One a                          -- a singleton set {a} 

  | Union (RegExp a) (RegExp a)    -- union of two RegExp 

  | Cat (RegExp a) (RegExp a)      -- Concatenation 

  | Star (RegExp a)                -- Kleene closure 

 



Find CFG for these languages 

{an b an | n Є Nat} 
 
{ w | w Є {a,b}*, and w is a palindrome of even length} 
 
{an bk | n,k Є Nat, n ≤ k} 
 
{an bk | n,k Є Nat, n ≥ k} 
 
{ w | w Є {a,b}*, w has equal number of a’s and b’s } 
 
 
 



Ambiguity 

A language is ambiguous if one of its strings 
has 2 or more leftmost (or rightmost) 
derivations. 

• Consider the grammar 
1. E ->  E + E  
2. E -> E * E  
3. E -> x | y 

• And the string:     x + x * y 
 

E ⇒1 E + E ⇒3 x + E ⇒2 x + E * E ⇒3 x + x * E ⇒3 x + x * y 
 
E ⇒2 E * E ⇒1 E + E * E ⇒3 x + E * E ⇒3 x + x * E ⇒3 x + x * y 
 
Note we use the productions in a different order. 

 



Common Grammars with ambiguity 

Expression grammars with infix operators 
with different precedence levels. 

 
 
Nested if-then-else statements 

st  ->  if exp  then st  else st   
          |  if exp then st 
          | id := exp 

if x=2 then if x=3 then y:=2 else y := 4 
 

if x=2 then (if x=3 then y:=2 ) else y := 4 
if x=2 then (if x=3 then y:=2 else y := 4) 

 



Removing ambiguity. 

Adding levels to a grammar 
E ->  E + E  |  E * E |  id | ( E ) 
 
Transform to an equivalent grammar 
 
E   ->   E + T  |  T 
T   ->   T * F  |  F 
F   ->  id  |  (  E  ) 
 
Levels make formal the notion of precedence. 

Operators that bind “tightly” are on the lowest levels 
 

 



Chomsky Normal Form defined 

There are many CFG's for any given CFL. When reasoning 
about CFL's, it often helps to assume that a grammar for 
it has some particularly simple form. 

A grammar is in Chomsky normal form 
(CNF) if every rule is of the form 

1. A → BC           where B,C are variables 
1. B and C can’t be S 

2. A → a             where a is a terminal 
3. S → ε                   is allowed (only S can be nullable) 

 
Remove  ε-rules             A → ε  
Remove unit rules          A → B 
Transform rules with too many symbols on rhs 
                                   A → B B x C 

 



Finding a Chomsky Normal Form 

Every grammar has a equivalent grammar 
(that generates the same language) in 
Chomsky normal form. 

 
This grammar can be constructed using a 

few simple (language preserving) 
grammar transformations 



ε-Productions 

  
A variable A is nullable if A ⇒∗ ε. We can modify a 

given grammar G and obtain a grammar G' in 
which there are no nullable variables and which 
satisfies L(G') = L(G) - {ε}. 

 
Find nullable symbols iteratively, using these facts: 
1. If A → ε is a production, then A is nullable. 
2. If A → B1B2 … Bk is a production and B1,B2, … ,Bk 

are all nullable, then A is nullable. 
 
 



Once nullable symbols are known, we get G' as 
follows: 

 
1. For every production A → α, add new 

productions A → α’ , where α’ is obtained by 
deleting some (or all) nullable symbols from α. 

2. Remove all productions A → ε  
 
Example. If G contains a production A → BC and 

both B and C are nullable, then we add  
       A → B | C  
     to G'.  
 



Unit Productions 

These are of the form A → B, where A,B are variables.  
Assuming the grammar has no ε−productions, we can 

eliminate unit productions as follows. 
 
1. Find all pairs of variables such that A ⇒∗ B. (This 

happens iff B can be obtained from A by a chain of 
unit productions.) 

2. Add new production A → α  whenever A ⇒∗ B ⇒ α. 
3. Remove all unit productions. 
 



Theorem. For every CFG G, there exists a CFG G' 
in CNF such that L(G')=L(G) - {ε} 

 
The first three steps of getting G' are elimination of 

ε-productions, elimination of unit productions, 
and elimination of useless symbols (in that 
order). There remain two steps: 

 
1. Arrange that all productions are of the form A 

→ α, where α is a terminal, or contains only 
variables.  

2. Break up every production A → α  with | α |>2 
into productions whose rhs has length two. 

  
 



For the first part, introduce a new variable C for each 
terminal c that occurs in the rhs of some 
production, add the production C → c (unless 
such a production already exists), and replace c 
with C in all other productions.  

 
For example, the production A → 0B1 would be 
replaced with A0 → 0, A1 → 1, A → A0BA1. 
 
An example explains the second part. The production 

A → BCDE is replaced by three others,  
1. A → BA1,  
2. A1 → CA2,  
3. A2 → DE,  

using two new variables A1, A2.  
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