
Automata and Formal Languages

Tim Sheard 1 Lecture 11

Context Free Grammars

Sipser pages 100 - 109

Formal Languages

1. Context free languages provide a convenient
notation for recursive description of languages.

2. The original goal of formalizing the structure of
natural languages is still elusive, but CFGs are
now the universally accepted formalism for
definition of (the syntax of) programming
languages.

3. Writing parsers has become an almost fully
automated process thanks to this theory.

A Simple Grammar for English
Example taken from Floyd & Beigel.

<Sentence> → <Subject> <Predicate>

<Subject> → <Pronoun1> | <Pronoun2>

<Pronoun1> → I | we | you | he | she | it | they

<Noun Phrase> → <Simple Noun Phrase> | <Article> <Noun Phrase>

<Article> → a | an | the

<Simple Noun Phrase> → <Noun> | <Adjective> <Simple Noun Phrase>

<Predicate> → <Verb> | <Verb> <Object>

<Object> → <Pronoun2> | <Noun Phrase>

<Pronoun2> → me | us | you | him | her | it | them

<Noun> → . . .

<Verb> → . . .

1. Each rule is called a production
2. lhs → lhs lhs is a symbol, rhs is a string of symbols

3. Variable (or non-terminal) < … >
4. Symbol (or terminal) bold

Example
Derive the sentence “She drives a shiny black car” from these

rules.
sentence

subject predicate

pronoun1

She

verb object

drives

Noun phrase

adjective Simple Noun phrase

adjective Simple noun phrase

Simple Noun phrase article

a shiny black car

Noun

Derivation rules

1. Write down the start symbol (lhs of the first
rule, unless otherwise stated)

2. Find a variable, v, and a corresponding

rule where: v → rhs

3. Replace the variable with the string rhs

4. Repeat, starting at 2. until no more
variables remain.

Derivation

<sentence> ⇒
<subject> <predicate> ⇒
<pronoun> <predicate> ⇒
She <predicate> ⇒
She <verb> <object> ⇒
She drives <object> ⇒
She drives <simple noun phrase> ⇒
She drives <article> <noun phrase> ⇒
She drives a <noun phrase> ⇒
She drives a <adjective> <noun phrase> ⇒
She drives a shiny <noun phrase> ⇒
She drives a shiny <adjective> <simple noun phrase> ⇒
She drives a shiny black <simple noun phrase> ⇒
She drives a shiny black <noun> ⇒
She drives a shiny black car

I Have underlined
the variable I will
replace in the next
step.

A Grammar for Expressions

<Expression> → <Term> | <Expression> + <Term>

<Term> → <Factor> | <Term> * <Factor>

<Factor> → <Identifer> | (<Expression>)

<Identifier> → x | y | z | …

In class exercise: Derive

• x + (y * 3)

• x + z * w + q

Definition of Context-Free-Grammars

A CFG is a quadruple G= (V,Σ,R,S), where

– V is a finite set of variables (nonterminals,
syntactic categories)

– Σ is a finite set of terminals

– R is a finite set of productions -- rules of the
form X→a, where X∈V and a∈(V ∪ Σ)*

– S, the start symbol, is an element of V

Vertical bar (|), as used in the examples on the previous slide, is

used to denote a set of several productions (with the same lhs).

Example

V = {<Expression>, <Term>, <Factor>, <Identifier>}
Σ = {+, *, (,), x, y, z, …}
R = {

<Expression> → <Term>
<Expression> → <Expression> + <Term>
<Term> → <Factor>
<Term> → <Term> * <Factor>
<Factor> → <Identifer>
<Factor> → (<Expression>)
<Identifier> → x
<Identifier> → y
<Identifier> → z
<Identifier> → …

 }
S = <Expression>

<Expression> → <Term> | <Expression> + <Term>

<Term> → <Factor> | <Term> * <Factor>

<Factor> → <Identifer> | (<Expression>)

<Identifier> → x | y | z | …

Notational Conventions

a,b,c, … (lower case, beginning of alphabet)
are concrete terminals;

u,v,w,x,y,z (lower case, end of alphabet) are

for strings of terminals

α,β,γ, … (Greek letters) are for strings over

(T ∪ V) (sentential forms)

A,B,C, … (capitals, beginning of alphabet) are

for variables (for non-terminals).

X,Y,Z are for variables standing for terminals.

Short-hand

Note. We often abbreviate a context free grammar,
such as:

G2 = (V={S},
 Σ={(,)},
 R={ S → ε, S → SS, S → (S) },
 S=S}
By giving just its productions
S → ε | SS |(S)

And by using the following conventions.

1) The start symbol is the lhs of the first production.
2) Multiple production for the same lhs non-terminal can be

grouped together by using vertical bar (|)
3) Non-terminals are capitalized.
4) Terminal-symbols are lower case or non-alphabetic.

Definitions
The single-step derivation relation ⇒ on (V∪ T)* is defined

by:

1. α ⇒ β iff β is obtained from α by replacing an

occurrence of the lhs of a production with its rhs. That
is, α'Aα'' ⇒ α'γα'' is true iff A → γ is a production. We
say α'Aα'' yields α'γα''

2. We write α ⇒∗ β when β can be obtained from α
through a sequence of several (possibly zero) derivation
steps.

3. The language of the CFG , G, is the set
 L(G) = {w∈T* | S ⇒∗ w} (where S is the start symbol of G)

1. Context-free languages are languages of the form L(G)

Example 1

The familiar non-regular language
 L = { akbk | k ≥ 0 }
is context-free.

The grammar G1 for it is given by T={a,b}, V={S},
and productions:
1. S → Λ
2. S → a S b

Here is a derivation showing a3b3∈ L(G):
S ⇒2 aSb ⇒2 aaSbb ⇒2 aaaSbbb ⇒1 aaabbb

(Note: we sometimes label the arrow with a subscript which tells the

production used to enable the transformation)

Example 1 continued

Note, however, that the fact L=L(G1) is not totally
obvious. We need to prove set inclusion both
ways.

To prove L ⊆ L(G1) we must show that there exists

a derivation for every string akbk; this is done by
induction on k.

For the converse, L(G1) ⊆ L, we need to show that

if S ⇒∗ w and w∈T*, then w∈ L. This is done by
induction on the length of derivation of w.

Example 2

The language of balanced parentheses is
context-free. It is generated by the
following grammar:

 G2 = (V={S},
 Σ={(,)},
 R={ S → ε | SS |(S)},
 S=S}

Example 3

Consider the grammar:
S → AS | ε
A → 0A1 | A1 | 01

The derivation:
S⇒ AS ⇒ A1S ⇒ 011S ⇒ 011AS ⇒

0110A1S ⇒ 0110011S ⇒ 0110011

shows that 0110011 ∈ L(G3).

Example 3 notes

The language L(G3) consists of strings
w∈{0,1}* such that:

P(w): Either w=ε, or w begins with 0, and
every block of 0's in w is followed by at
least as many 1's

Again, the proof that G3 generates all and

only strings that satisfy P(w) is not
obvious. It requires a two-part inductive
proof.

Leftmost and Rightmost Derivations

The same string w usually has many possible
derivations S ≡ a0⇒a1⇒a2⇒ … ⇒ an ≡ w

We call a derivation leftmost if in every step
ai⇒ai+1, it is the first (leftmost) variable in ai$
that is being replaced with the rhs of a
production. Similarly, in a rightmost derivation, it
is always the last variable that gets replaced.

The above derivation of the string 0110011 in the
grammar G3 is leftmost. Here is a rightmost
derivation of the same string:

S ⇒ AS ⇒ AAS ⇒ AA ⇒ A0A1 ⇒ A0011 ⇒
A10011 ⇒ 0110011

S → AS | ε
A → 0A1 | A1 | 01

Facts

Every Regular Language is also a Context
Free Language

How might we prove this?

Choose one of the many specifications for
regular languages

Show that every instance of that kind of
specification has a total mapping into a
Context Free Grammar

What is an appropriate choice?

Designing CFGs

Break the language into simpler (disjoint)
parts with Grammars A B C . Then put
them together S → StartA | StartB | StartC

If a Language fragment is Regular construct
a DFA or RE, use these to guide you.

Infinite languages use rules like
R → a R
R → R b

Languages with linked parts use rules like
R → B x B
R → x R x

In Class Exercise

Map the Haskell Regular Expression
datatype into a Context Free language.

data RegExp a

 = Lambda -- the empty string ""

 | Empty -- the empty set

 | One a -- a singleton set {a}

 | Union (RegExp a) (RegExp a) -- union of two RegExp

 | Cat (RegExp a) (RegExp a) -- Concatenation

 | Star (RegExp a) -- Kleene closure

Find CFG for these languages

{an b an | n Є Nat}

{ w | w Є {a,b}*, and w is a palindrome of even length}

{an bk | n,k Є Nat, n ≤ k}

{an bk | n,k Є Nat, n ≥ k}

{ w | w Є {a,b}*, w has equal number of a’s and b’s }

Ambiguity

A language is ambiguous if one of its strings
has 2 or more leftmost (or rightmost)
derivations.

• Consider the grammar
1. E -> E + E
2. E -> E * E
3. E -> x | y

• And the string: x + x * y

E ⇒1 E + E ⇒3 x + E ⇒2 x + E * E ⇒3 x + x * E ⇒3 x + x * y

E ⇒2 E * E ⇒1 E + E * E ⇒3 x + E * E ⇒3 x + x * E ⇒3 x + x * y

Note we use the productions in a different order.

Common Grammars with ambiguity

Expression grammars with infix operators
with different precedence levels.

Nested if-then-else statements

st -> if exp then st else st
 | if exp then st
 | id := exp

if x=2 then if x=3 then y:=2 else y := 4

if x=2 then (if x=3 then y:=2) else y := 4
if x=2 then (if x=3 then y:=2 else y := 4)

Removing ambiguity.

Adding levels to a grammar
E -> E + E | E * E | id | (E)

Transform to an equivalent grammar

E -> E + T | T
T -> T * F | F
F -> id | (E)

Levels make formal the notion of precedence.

Operators that bind “tightly” are on the lowest levels

Chomsky Normal Form defined

There are many CFG's for any given CFL. When reasoning
about CFL's, it often helps to assume that a grammar for
it has some particularly simple form.

A grammar is in Chomsky normal form
(CNF) if every rule is of the form

1. A → BC where B,C are variables
1. B and C can’t be S

2. A → a where a is a terminal
3. S → ε is allowed (only S can be nullable)

Remove ε-rules A → ε
Remove unit rules A → B
Transform rules with too many symbols on rhs
 A → B B x C

Finding a Chomsky Normal Form

Every grammar has a equivalent grammar
(that generates the same language) in
Chomsky normal form.

This grammar can be constructed using a

few simple (language preserving)
grammar transformations

ε-Productions

A variable A is nullable if A ⇒∗ ε. We can modify a

given grammar G and obtain a grammar G' in
which there are no nullable variables and which
satisfies L(G') = L(G) - {ε}.

Find nullable symbols iteratively, using these facts:
1. If A → ε is a production, then A is nullable.
2. If A → B1B2 … Bk is a production and B1,B2, … ,Bk

are all nullable, then A is nullable.

Once nullable symbols are known, we get G' as
follows:

1. For every production A → α, add new

productions A → α’ , where α’ is obtained by
deleting some (or all) nullable symbols from α.

2. Remove all productions A → ε

Example. If G contains a production A → BC and

both B and C are nullable, then we add
 A → B | C
 to G'.

Unit Productions

These are of the form A → B, where A,B are variables.
Assuming the grammar has no ε−productions, we can

eliminate unit productions as follows.

1. Find all pairs of variables such that A ⇒∗ B. (This

happens iff B can be obtained from A by a chain of
unit productions.)

2. Add new production A → α whenever A ⇒∗ B ⇒ α.
3. Remove all unit productions.

Theorem. For every CFG G, there exists a CFG G'
in CNF such that L(G')=L(G) - {ε}

The first three steps of getting G' are elimination of

ε-productions, elimination of unit productions,
and elimination of useless symbols (in that
order). There remain two steps:

1. Arrange that all productions are of the form A

→ α, where α is a terminal, or contains only
variables.

2. Break up every production A → α with | α |>2
into productions whose rhs has length two.

For the first part, introduce a new variable C for each
terminal c that occurs in the rhs of some
production, add the production C → c (unless
such a production already exists), and replace c
with C in all other productions.

For example, the production A → 0B1 would be
replaced with A0 → 0, A1 → 1, A → A0BA1.

An example explains the second part. The production

A → BCDE is replaced by three others,
1. A → BA1,
2. A1 → CA2,
3. A2 → DE,

using two new variables A1, A2.

	Context Free Grammars
	Formal Languages
	A Simple Grammar for English
	Example
	Derivation rules
	Derivation
	A Grammar for Expressions
	Definition of Context-Free-Grammars
	Example
	Notational Conventions
	Short-hand
	Definitions
	Example 1
	Example 1 continued
	Example 2
	Example 3
	Example 3 notes
	Leftmost and Rightmost Derivations
	Facts
	Designing CFGs
	In Class Exercise
	Find CFG for these languages
	Ambiguity
	Common Grammars with ambiguity
	Removing ambiguity.
	Chomsky Normal Form defined
	Finding a Chomsky Normal Form
	e-Productions
	Slide Number 29
	Unit Productions
	Slide Number 31
	Slide Number 32

