NFA defined

Sipser pages 47-54

NFA

- A Non-deterministic Finite-state Automata (NFA) is a language recognizing system similar to a DFA.
- It supports a level of non-determinism. I.e. At some points in time it is possible for the machine to take on many next-states.
- Non-determinism makes it easier to express certain kinds of languages.

Nondeterministic Finite Automata (NFA)

- When an NFA receives an input symbol a, it can make a transition to zero, one, two, or even more states.
- each state can have multiple edges labeled with the same symbol.
- An NFA accepts a string w iff there exists a path labeled w from the initial state to one of the final states.
- In fact, because of the non-determinism, there may be many states labeled with W

Example N1

- The language of the following NFA consists of all strings over $\{0,1\}$ whose $3^{\text {rd }}$ symbol from the right is 0 .

- Note Q_{0} has multiple transitions on 0 and Q_{3} has no transitions on both 0 and 1

Example N2

- The NFA N_{2} accepts strings beginning with 0.

Note no transitions
from Q_{0} on 1

- Note Q_{0} has no transition on 1
- It is acceptable for the transition function to be undefined on some input elements for some states.

NFA Processing

- Suppose N_{1} receives the input string 0011 . There are three possible execution sequences:
- $\mathrm{q}_{0} \longrightarrow \mathrm{q}_{0} \longrightarrow \mathrm{q}_{0} \longrightarrow \mathrm{q}_{0} \longrightarrow \mathrm{q}_{0}$
- $\mathrm{q}_{0} \longrightarrow \mathrm{q}_{0} \longrightarrow \mathrm{q}_{1} \longrightarrow \mathrm{q}_{2} \longrightarrow \mathrm{q}_{3}$
- $\mathrm{q}_{0} \longrightarrow \mathrm{q}_{1} \longrightarrow \mathrm{q}_{2} \longrightarrow \mathrm{q}_{3}$

- Only the second finishes in an accept state. The third even gets stuck (cannot even read the fourth symbol).

As long is there is at least one path to an accepting state, then the string is accepted.

Path Tree

Input $=0011$

A note about NFA's

- In the Sipser text book (page 53) the definition for an NFA is slightly different from what we will see on the next page.
- The NFA that Sipser defines, we call an NFAe.
- It allows transitions on edges labeled with ε (the empty string)
- We talk about this in a separate set of notes.

Formal Definition

- An NFA is a quintuple $A=(Q, \Sigma, \delta, S, F)$, where the first four components are as in a DFA, and the transition function produces values in $\mathrm{P}(\mathrm{Q})$ (the power set of Q) instead of Q . Thus

$$
\delta: Q \times \Sigma \longrightarrow P(Q) \quad \text { note that } T \text { returns a set of states! }
$$

- A NFA $A=(Q, \Sigma, \delta, S, F)$, accepts a string $\mathrm{W}_{1} \mathrm{~W}_{\mathbf{2}} \ldots \mathrm{W}_{\mathrm{n}}$ (an element of Σ^{*}) iff there exists a sequence of states $\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}} \ldots \mathbf{r}_{\mathbf{n}} \boldsymbol{r}_{\mathrm{n}+1}$ such that

1. $r_{1}=s$
2. $r_{i+1} \in \delta\left(r_{i}, w_{i}\right)$
3. $r_{n+1} \cap F \neq \varnothing$

Compare with DFA

$$
\begin{aligned}
\text { A DFA } & =\left(\mathbf{Q}, \Sigma, \delta, \mathbf{q}_{\odot}, F\right), \quad \text { accepts a string } \\
\mathrm{w} & ={ }^{\prime} \mathrm{w}_{1} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}{ }^{\prime \prime} \text { iff }
\end{aligned}
$$

There exists a sequence of states $\left[r_{0}, r_{1}, \ldots r_{n}\right]$ with 3 conditions

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i}+1$
3. $r_{n} \in F$

The extension of the transition function

- Let an NFA $\mathrm{A}=(\mathrm{Q}, \Sigma, \delta, \mathrm{S}, \mathrm{F})$
- The extension $\underline{\delta}: Q \times \Sigma^{*} \longrightarrow P\left(Q_{t}\right)$ extends δ so that it is defined over a string of input symbols, rather than a single symbol. It is defined by
$-\frac{\delta}{\delta}(q, \varepsilon)=\{q\}$
$-\underline{\bar{\delta}}(q, x: \times s)=\cup_{p \in \delta(q, x) \underline{\delta}(p, x s)}$
Compute this by taking the union of the sets
$\underline{\delta}(\mathrm{p}, \mathrm{xs})$, where p varies over all states in the set $\delta(q, x)$
- First compute $\delta(\mathrm{q}, \mathrm{x})$, this is a set, call it S .
- for each element, p in S, compute $\underline{\delta}(p, x s)$,
- Union all these sets together.

Intuition

- At any point in the walk over a string, such as " 000 " the machine can be in a set of states.
- To take the next step, on a character ' c ', we create a new set of states. All those reachable from any of the old sets on a single ' c '
$\underline{\delta}(q, \varepsilon)=\{q\}$
$\underline{\delta}(q, x: x s)=\bigcup_{p \in \delta(q, x)} \underline{\delta}(p, x s)$
Consider computing $\underline{\delta}\left(\mathrm{Q}_{0}, 001\right)$
The answer will be $\left\{\mathrm{Q}_{0}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right\}$
Start by one-step computing $\delta\left(\mathrm{Q}_{0}, 0\right)=\left\{\mathrm{Q}_{0}, \mathrm{Q}_{1}\right\}$

So for each of Q_{0}, Q_{1} recursively many-step compute

$$
\frac{\delta}{\underline{\delta}}\left(\mathrm{Q}_{0}, 01\right)=\left\{\mathrm{Q}_{1}, \mathrm{Q}_{1}\right\}
$$

Then union them together!

Another NFA Acceptance Definition

- An NFA accepts a string w iff $\underline{\delta}(s, w)$ contains a final state. The language of an NFA N is the set $L(N)$ of accepted strings:
- $L(N)=\{w \mid \underline{\delta}(s, w) \cap F \neq \varnothing\}$
- Compare this with the $\mathbf{2}$ definitions of DFA acceptance in last weeks lecture.

```
A DFA = (\mathbf{Q},\mathbf{\Sigma},\boldsymbol{\delta},\mp@subsup{\mathbf{q}}{0}{},\mathbf{F}), accepts a string
    w = "ww wh_ ...wn" iff
```

There exists a sequence of states $\left[r_{0}, r_{1}, \ldots r_{n}\right]$ with 3 conditions

1. $r_{0}=q_{0}$
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i}+1$
3. $r_{n} \in F$
```
A DFA =(\mathbf{Q},\Sigma,\delta,\mp@subsup{\mathbf{q}}{0}{},\mathbf{F})\mathrm{ accepts a string w iff }\underline{\delta}(\mp@subsup{\mathbf{q}}{0}{},\mathbf{W})\in\mathbf{F}
More formally
L(A)={w | \underline{\delta}(Start(A),w)\in Final(A)}
```


Implementation

- Implementation of NFAs has to be deterministic, using some form of backtracking to go through all possible executions.
- Any thoughts on how this might be accomplished?

In Haskel

data NFA q s = NFA [q] -- states
[s] -- symbols
(q $->\mathrm{s}->$ [q]) - - trans

q	-- start
$[q]$	-- accept states

Path acceptance

```
allSeq xs 0 = []
allSeq xs 1 = [[x] | x <- xs ]
allSeq xs n = [ y:ys | ys <- allSeq xs (n-1), y <- xs]
cond1 nfa (r:rs) = r == (start nfa)
cond1 nfa [] = False
cond2 nfa [] [r] = True
    (elem r2 (trans nfa r1 w)) && (cond2 nfa ws (r2:rs))
cond2 nfa _ _ = False
cond3 nfa [r] = isFinal nfa r
cond3 nfa (r:rs) = cond3 nfa rs
cond3 nfa _ = False
cond nfa ws path = cond1 nfa path &&
                                    cond2 nfa ws path &&
                                    cond3 nfa path
\(\mathrm{w}={ }^{\prime} \mathrm{w}_{1} \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}{ }^{\prime}\) iff
There exists a sequence of states [ \(r_{0}, r_{1}, \ldots r_{n}\) ] with 3 conditions
1. \(r_{0}=q_{0}\)
2. \(\delta\left(r_{i}, w_{i+1}\right)=r_{i}+1\)
3. \(r_{n} \in F\)
```

cond2 nfa (w:ws) (r1:r2:rs) =

```
```

cond2 nfa (w:ws) (r1:r2:rs) =

```

``` cond3 nfa path
```

```
accept1 nfa ws = any (cond nfa ws) paths
```

accept1 nfa ws = any (cond nfa ws) paths
where paths = allSeq (states nfa) (1 + length ws)

```
```

    where paths = allSeq (states nfa) (1 + length ws)
    ```
```


## Transition extension acceptance

Trace input


```
deltaBar nfa q [] = [q]
```

deltaBar nfa q [] = [q]
deltaBar nfa q (w:ws) =
closure:: Ord q => NFA q s -> [q] -> s -> [q
closure nfa qs s =
unionsL [trans nfa q s | q <- qs]
unionsL [ deltaBar nfa p ws
| p <- closure nfa [q] w]
acceptNFA2 nfa ws =
not(null(intersect last (accept nfa)))
where last = deltaBar nfa (start nfa) ws

```
deltaBar n2 (start n2) "ab "
 \(=[0,1]\)
Not(null(intersect [0,1] (accept n2))) = True
```

