Push Down Automata

Sipser pages 109-114

Push Down Automata

Push Down Automata (PDAs) are ε-NFAs with stack memory.

Transitions are labeled by an input symbol together with a pair of the form X / α

The transition is possible only if the top of the stack contains the symbol X

After the transition, the stack is changed by replacing the top symbol X with the string of symbols α. (Pop X, then push symbols of α.)

Example

PDAs can accept languages that are not regular. The following one accepts:

$$
L=\left\{0^{\prime} 1^{j} \mid 0 \leq i \leq j\right\}
$$

Definition

A PDA is a 6 -tuple $\mathrm{P}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, F\right)$ where $\mathrm{Q}, \Sigma, \mathrm{q}_{0}$, F are as in NFAs, and

- Γ is the stack alphabet. It is assumed that initially the stack is empty.
- $\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathrm{P}\left(\mathrm{Q} \times \Gamma_{\varepsilon_{i}}{ }^{*}\right)$ is the transition function: given a state, an input symbol (or ε), and a stack symbol, Γ_{ε}, it gives us a finite number of pairs (q, α), where q is the next state and α is the string of stack symbols that will replace X on top of the stack.
- Recall $\Sigma_{\varepsilon}=(\Sigma \cup\{\varepsilon\}) \quad \Gamma_{\varepsilon}=(\Gamma \cup\{\varepsilon\})$

In our example, the transition from s to s labeled $\left(0, Z_{0} / X Z_{0}\right)$ corresponds to the fact $\left(s, X Z_{0}\right) \in$ $\delta\left(S, 0, Z_{0}\right)$. A complete description of the transition function in this example is given by
$\delta\left(s, 0, Z_{0}\right)=\left\{\left(s, X Z_{0}\right)\right\}$
$\delta(s, 0, X)=\{(s, X X)\}$
$\delta\left(s, \varepsilon, Z_{0}\right)=\left\{\left(q, Z_{0}\right)\right\}$
$\delta(s, 1, X)=\{(p, \varepsilon)\}$
$\delta(p, 1, X)=\{(p, \varepsilon)\}$
$\delta\left(p, \varepsilon, Z_{0}\right)=\left\{\left(q, Z_{0}\right)\right\}$

$\delta\left(q, 1, Z_{0}\right)=\left\{\left(q, Z_{0}\right)\right\}$
and
$\delta(q, a, Y)=\varnothing \quad$ for all other possibilities.

Sipser style acceptance

- Suppose a string w can be written: $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{m}}$
- $W_{i} \in \Sigma_{\varepsilon}$ Some of the w_{i} are allowed to be ε
- I.e. One may write "abc" as a a b c ε
- If there exist two sequences
- $s_{0} r_{1} \ldots r_{m} \in Q$
- $\mathrm{s}_{0} \mathrm{~s}_{1} \ldots \mathrm{~s}_{\mathrm{m}} \in \Gamma^{*}$ (The s_{i} represent the stack contents at step i)

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$
2. $\left(r_{i}+1, b\right) \in \delta\left(r_{i}, w_{i}+1, a\right)$ $s_{i}=a t \quad s_{i+1}=b t$
3. $R_{m} \in F$

I nstantaneous Descriptions and Moves of PDAs

IDs (also called configurations) describe the execution of a PDA at each instant. An ID is a triple (q, w, α), with this intended meaning:

- q is the current state
- w is the remaining part of the input
- α is the current content of the stack, with top of the stack on the left.

The relation |- describes possible moves from one ID to another during execution of a PDA. If $\delta(q, a, X)$ contains (p, α), then

$$
(q, a w, \chi \beta) \mid-\quad(p, w, \alpha \beta)
$$

is true for every w and β.

The relation |-* is the reflexive-transitive closure of $\mid-$

We have (q, w, a) \quad-* $^{*}\left(q^{\prime}, w^{\prime}, a^{\prime}\right)$ when (q, w, a) leads through a sequence (possibly empty) of moves to ($q^{\prime}, w^{\prime}, a^{\prime}$)

Automata and Formal Languages

$(s, 011, z)|-(s, 11, x z)|-(P, 1, z)|-(q, 1, z)|-\left(q, "{ }^{\prime \prime}, Z\right)$
$(s, 011, z) \mid-(q, 011, Z)$

Properties of | -

Property 1.

If

Then

$$
\begin{aligned}
& \left.(q, x, \alpha)\right|_{-*}(p, y, \beta) \\
& \left.(q, x w, \alpha \gamma)\right|_{-*}(p, y w, \beta \gamma)
\end{aligned}
$$

If you only need some prefix of the input (x) and stack (α) to make a series of transitions, you can make the same transitions for any longer input and stack.

Property 2.

If
Then

$$
(q, x w, \alpha) \mid-*(p, y w, \beta)
$$

$$
(q, x, \alpha) \mid-*(p, y, \beta)
$$

It is ok to remove unused input, since a PDA cannot add input back on once consumed.

Another notion of acceptance

A PDA as above accepts the string w iff
$\left(q_{0}, W, \varepsilon\right) \mid{ }^{*}(p, \varepsilon, \alpha)$ is true for some final state p and some α. (We don't care what's on the stack at the end of input.)

The language $\mathrm{L}(\mathrm{P})$ of the PDA P is the set of all strings accepted by P .

Here is the chain of IDs showing that the string 001111 is accepted by our example PDA:

```
    (s,001111,\varepsilon)
|- (s,01111,XZ_)
|- (s, 1111,XXZ_)
|- (p,111,XZ_)
|- (p,11,Z_)
|- (q,11,Z Z)
|- (q,1,\mp@subsup{Z}{0}{})
|- (q,\varepsilon,Z )
```


The language of the following PDA is
$\left\{01^{j} \mid 0<i \leq j\right\}^{*}$.
How can we prove this?

Example

A PDA for the language of balanced parentheses:

Acceptance by Empty Stack

Define $N(P)$ to be the set of all strings w such that $\left(q_{0}, W, \varepsilon\right) \mid-{ }^{*}(q, \varepsilon, \varepsilon)$
for some state q. These are the strings P accepts by empty stack. Note that the set of final states plays no role in this definition.

Theorem. A language is $L\left(P_{1}\right)$ for some PDA P_{1} if and only if it is $N\left(P_{2}\right)$ for some PDA P_{2}^{1}.

Proof 1

1. From empty stack to final state.

Given P_{2} that accepts by empty stack, get P_{1} by adding a new start state and a new final state as in the picture below. We also add a new stack symbol X_{0} and make it the start symbol for P_{1} 's stack.

Proof 2

2. From final state to empty stack.

Given P_{1}, we get P_{2} again by adding a new start state, final state and start stack symbol. New transitions are seen in the picture.

