Push Down Automata

Sipser pages 109 - 114

Push Down Automata

- Push Down Automata (PDAs) are ϵ -NFAs with stack memory.
- Transitions are labeled by an input symbol together with a pair of the form X/ $\!\alpha$
- The transition is possible only if the top of the stack contains the symbol X
- After the transition, the stack is changed by replacing the top symbol X with the string of symbols α . (Pop X, then push symbols of α .)

Example

PDAs can accept languages that are not regular. The following one accepts:

 $L = \{0^i 1^j \mid 0 \le i \le j\}$

0, X/XX

Definition

- A PDA is a 6-tuple $P=(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, Σ, q_0, F are as in NFAs, and
- Γ is the *stack alphabet*. It is assumed that initially the stack is empty.
- δ: Q × Σ_ε × Γ_ε → P(Q × Γ_ε*) is the *transition* function: given a state, an input symbol (or ε), and a stack symbol, Γ_ε, it gives us a finite number of pairs (q,α), where q is the next state and α is the string of stack symbols that will replace X on top of the stack.
- Recall $\Sigma_{\varepsilon} = (\Sigma \cup \{\varepsilon\})$ $\Gamma_{\varepsilon} = (\Gamma \cup \{\varepsilon\})$

In our example, the transition from s to s labeled $(0, Z_0/XZ_0)$ corresponds to the fact $(s, XZ_0) \in \delta(s, 0, Z_0)$. A complete description of the transition function in this example is given by

1, Z_0/Z_0

1, X/E

 $\varepsilon_{r} \mathbf{Z}_{0}/\mathbf{Z}_{0}$

 $\varepsilon_{r} \mathbf{z}_{0}/\mathbf{z}_{0}$

 $\delta(s,0,Z_{0}) = \{(s,XZ_{0})\}$ $\delta(s,0,X) = \{(s,XX)\}$ $\delta(s,e,Z_{0}) = \{(q,Z_{0})\}$ $\delta(s,1,X) = \{(p,e)\}$ $\delta(p,1,X) = \{(p,e)\}$ $\delta(p,e,Z_{0}) = \{(q,Z_{0})\}$ and

 $\delta(q,a,Y) = \emptyset$ for all other possibilities.

Sipser style acceptance

- Suppose a string w can be written: w₁ w₂ ... w_m
 - $W_i \in \Sigma_{\epsilon}$ Some of the w_i are allowed to be ϵ
 - I.e. One may write "abc" as $a \epsilon b c \epsilon$
- If there exist two sequences
 - $s_0 r_1 \dots r_m \in Q$
 - $s_0 \ s_1 \ \dots \ s_m \in \ \Gamma^*$ (The s_i represent the stack contents at step i)

1.
$$r_0 = q_0$$
 and $s_0 = \epsilon$
2. $(r_i + 1, b) \in \delta(r_i, w_i + 1, a)$
 $s_i = at$ $s_{i+1} = bt$
3. $R_m \in F$

Instantaneous Descriptions and Moves of PDAs

IDs (also called *configurations*) describe the execution of a PDA at each instant. An ID is a triple (q, W, α) , with this intended meaning:

- q is the current state
- *w* is the remaining part of the input
- α is the current content of the stack, with top of the stack on the left.

The relation |- describes possible moves from one ID to another during execution of a PDA. If $\delta(q,a,X)$ contains (p,α) , then

 $(q, a W, X\beta) |- (p, W, \alpha\beta)$

is true for every *w* and β .

The relation |-* is the reflexive-transitive closure of |-

We have (q,w,a) |-* (q',w',a') when (q,w,a) leads through a sequence (possibly empty) of moves to (q',w',a') Automata and Formal Languages =

(s,011,z) |- (s,11,xz) |- (P,1,z)|-(q,1,z) |- (q,"",Z)

(s,011,z) |- (q,011,Z)

Properties of |-

Property 1. If $(q,x,\alpha) \mid -* (p,y,\beta)$ Then $(q,xw,\alpha\gamma) \mid -* (p,yw,\beta\gamma)$

If you only need some prefix of the input (x) and stack (α) to make a series of transitions, you can make the same transitions for any longer input and stack.

Property 2. If $(q,xw,\alpha) \mid -* (p,yw,\beta)$ Then $(q,x,\alpha) \mid -* (p,y,\beta)$

It is ok to remove unused input, since a PDA cannot add input back on once consumed.

Another notion of acceptance

A PDA as above *accepts* the string *w* iff $(q_0, w, \varepsilon) | -^* (p, \varepsilon, \alpha)$ is true for some final state p and some α . (We don't care what's on the stack at the end of input.)

The *language* L(P) of the PDA P is the set of all strings accepted by P.

Here is the chain of IDs showing that the string 001111 is accepted by our example PDA:

The language of the following PDA is $\{0^i 1^j \mid 0 < i \le j\}^*$. How can we prove this?

Example

A PDA for the language of balanced parentheses:

Acceptance by Empty Stack

Define N(P) to be the set of all strings *w* such that

 $(q_0, W, \varepsilon) \mid -^* (q, \varepsilon, \varepsilon)$

for some state q. These are the strings P accepts by empty stack. Note that the set of final states plays no role in this definition.

Theorem. A language is $L(P_1)$ for some PDA P₁ if and only if it is $N(P_2)$ for some PDA P₂.

Proof 1

1. From empty stack to final state.

Given P_2 that accepts by empty stack, get P_1 by adding a new start state and a new final state as in the picture below. We also add a new stack symbol X_0 and make it the start symbol for P_1 's stack.

Proof 2

2. From final state to empty stack.

Given P₁, we get P₂ again by adding a new start state, final state and start stack symbol. New transitions are seen in the picture.

