
The Recursion Theorem 

Sipser – pages  217- 224 



Self replication 

• Living things are machines 
• Living things can self-reproduce 
• Machines cannot self reproduce 

 
• Are these things all true? 



The robot factory 

• Suppose there exits a robot factory that can 
make things 

• For example we program the factory to make 
cars. 

• But cars are simpler than robot factories, so 
this seems reasonable. 

• Can we program the robot factory to make 
robot factories? 



Can we write a program? 

• self x = … 
 

• Such that when we run self on any input we get 
the description of self as output? 
 

• This problem is related to the robot factory 
dilema – Can machines (programs, Turing 
Machines) encode enough information to 
reproduce their own descriptions. 

• The answer is yes! 



How do putStr and 
print differ 

Consider the Haskell Program 

copy s = putStr s >> print s 

self2 x = copy "self2 x = copy " 

 

 

*Main> self2 5 

self2 x = copy "self2 x = copy " 

A program like this is called a Quine, 
this is one of the smallest  Quines I 
know of, but it can be done in any 

language. 



Copy 

• copy s = putStr s >> print s 

 
• Copy just makes two copies of its input. 
• One where the string is not quoted, and the 

other where the string is quoted. 



self2 

• self2 x = copy "self2 x = copy " 

 
 

• Self2 just applies “copy” to  a string that forms 
the body of everything upto the string. 



Technical fix 

copy s = putStr s >> print s 

self2 x = copy "self2 x = copy " 
• Some will claim that self2 isn’t really self 

reproducing because it does not reproduce the 
code for copy. For such skeptics 

 

 

self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) " 

 



The recursion theorem 

• The recursion theorem states that some 
Turing Machines can reproduce their own 
descriptions  

• It is implied that we can turn any TM into an 
equivalent one that has this property. 
 



From Haskell to TMs 

• Our Haskell program had two components 
self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) " 

 
A. A program that returned that combined the string 

it was given. Once quoted, once not 
    (\s -> putStr s >> print s)  

B. A program that always returned a constant string .     
"self x = (\\s -> putStr s >> print s) “ 
 

• To translate our results to TM’s we will need similar 
components 



The copy component 

• Q (w) 
1. Construct the following Turing Machine  Pw 

1. Pw(x) =   on any input x 
1. Erase the input 
2. Write w on the tape 
3. Halt 

2. Output <Pw> 



The self reproducing TM 

• The TM   SELF   comes in 2 parts A and B 
– We want  SELF to print out  <SELF> =<AB> 
– By the way TMs run we want A to run first, the to 

pass control to B.  The output of A is on the tape 
when B starts 

– When A runs, it leaves a description of B on the 
tape.  This is easy as we can use PB by essentially 
defining A to be Q(B) 



What does B look like? 

• B (<M>) 
– Compute q(<M>) 
– Combine result with <M> (already on tape) to 

make a complete TM 
– Leave this complete TM on tape and Halt. 

 
– Compare with 

 
self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) " 

 
 



Why? 

• The recursion theorem says we can implement 
self referential programs in any sufficiently 
strong programming languages. 
 

• Any program can refer to its own description! 
 

• Not only can it obtain its own description, it 
can use this description to compute with! 



Recursion Theorem 

• Let T be a TM that computes a function from 
Σ*  ×   Σ* → Σ*. 

• There exists another TM, R,  where for every w 
– R(w) = T(<R>,w) 

 
– There is an equivalent Turing Machine that 

computes the same result given just w, but we can 
program T as if it had access to R’s description! 



Terminology 

• When describing a TM, M, one may include 
the words “obtain own description <M>” in 
the informal description of how M operates. 
 

• The machine might do things like 
– Print out M 
– Count the number of states in M 
– Simulate M 



A very simple example 

• SELF(x) = 
– Obtain via recursion theorem, its own description 

<SELF> 
– Print <SELF> 

 
• The recursion theorem says given the TM T 

– T(<M>,w) = Print <W> and Halt 
• We can obtain SELF above for free 
• SELF(w) = T(<SELF>,w) 



ATM is undecidable 

• Proof by contradiction 
• Assume H decides ATM 

• We construct B as follows 
– B(w) =  

• Obtain own description <B> 
• Run H(<B>,w) 
• Do the opposite of what H says 

– That is B rejects if   H(<B>,w) accepts 
– B accepts if  H(<B>,w) rejects 

• But  B does the opposite of B it H is to be believed, so it 
must be the case that H cannot be deciding ATM 



Minimal Machines 

• If M is TM, then we say the length of the 
description <M> is the number of (tape) 
symbols in the string describing M.  
 

• We say that M is minimal, if there is no 
equivalent TM to M that has a shorter 
description 

• Define the language 
– MINTM = { <M> | M is a minimal TM} 



MINTM is not Turing recognizable 
• Assume some TM, E, enumerates the MINTM, and obtain 

a contradiction. 
• Let C(w) =  

– Obtain (via recursion theorem) own description <C> 
– Run E until a machine D appears with a longer description 

than that of C 
– Simulate D on input w 

• There must be a D (why?)  D has length greater than C, 
but C behaves just like D. So D cannot be minimal, 
because C has smaller length. 

• So E can’t enumerate MINTM so our assumption must be 
false. 



Fixed Points 

• Let T:  Σ* → Σ* be a computable function. 
• Then there exists a TM F for which  T(<F>) 

describes a TM equivalent to F 
– If the input to T isn’t a proper TM encoding then T 

should return a TM that immediately rejects all 
strings 



Proof 

• Let F be the following TM 
• F(W) =  

– Obtain (via recursion theorem) own description <F> 
– Compute T(<F>) to obtain  description <G> 
– Simulate G on w 

 

• Since F simulates G, they are clearly the same 
• But  F = T(<F>) = G 
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