The Recursion Theorem

Sipser — pages 217- 224



Self replication

Living things are machines
Living things can self-reproduce
Machines cannot self reproduce

Are these things all true?



The robot factory

Suppose there exits a robot factory that can
make things

For example we program the factory to make
cars.

But cars are simpler than robot factories, so
this seems reasonable.

Can we program the robot factory to make
robot factories?



Can we write a program?

self x = ...

Such that when we run self on any input we get
the description of self as output?

This problem is related to the robot factory
dilema — Can machines (programs, Turing
Machines) encode enough information to
reproduce their own descriptions.

The answer is yes!



Consider the Haskell Program

COpy S = putStr s >> print s
self2 X copy "'self2 x = copy "

How do putStr and
print differ

*Main> self2 5
self2 x = copy "self2 x = copy "

this is one of the smallest Quines |
know of, but it can be done in any

A program like this is called a Quine, J
language.




Copy

e COPY S = putStr s >> print s

e Copy just makes two copies of its input.

* One where the string is not quoted, and the
other where the string is quoted.



self2

e self2 x = copy "'self2 x = copy "

e Self2 just applies “copy” to a string that forms
the body of everything upto the string.



Technical fix

COpy S = putStr s >> print s
self2 x = copy "self2 x = copy "

 Some will claim that self2 isn’t really self
reproducing because it does not reproduce the
code for copy. For such skeptics

self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s)



The recursion theorem

e The recursion theorem states that some

Turing Machines can reproduce their own
descriptions

e [tisimplied that we can turn any TM into an
equivalent one that has this property.



From Haskell to TMs

e QOur Haskell program had two components
self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) "

A. A program that returned that combined the string
it was given. Once quoted, once not
(\s -> putStr s >> print s)

B. A program that always returned a constant string .
"self x = (\\s -> putStr s >> print s) “

e To translate our results to TM’s we will need similar
components



The copy component

* Q(w)
1. Construct the following Turing Machine P,

1. P,(x)= onanyinputx
1. Erase the input
2. Write w on the tape
3. Halt

2. Output<P, >



The self reproducing TM

e The TM SELF comesin 2 parts Aand B
— We want SELF to print out <SELF> =<AB>

— By the way TMs run we want A to run first, the to
pass control to B. The output of A is on the tape
when B starts

— When A runs, it leaves a description of B on the
tape. This is easy as we can use Py by essentially
defining A to be Q(B)



What does B look like?

e B(<M>)
— Compute q(<M>)

— Combine result with <M> (already on tape) to
make a complete TM

— Leave this complete TM on tape and Halt.

— Compare with

self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s)



Why?

 The recursion theorem says we can implement
self referential programs in any sufficiently
strong programming languages.

 Any program can refer to its own description!

 Not only can it obtain its own description, it
can use this description to compute with!



Recursion Theorem

e Let T be a TM that computes a function from
X¥ ox XF o XF,

 There exists another TM, R, where for every w
— R(w) = T(<R>,w)

— There is an equivalent Turing Machine that
computes the same result given just w, but we can
program T as if it had access to R’s description!



Terminology

e When describing a TM, M, one may include
the words “obtain own description <M>" in
the informal description of how M operates.

* The machine might do things like
— Print out M
— Count the number of states in M

— Simulate M



A very simple example

SELF(x) =

— Obtain via recursion theorem, its own description
<SELF>

— Print <SELF>

The recursion theorem says giventhe TM T
— T(<M>,w) = Print <W> and Halt

We can obtain SELF above for free
SELF(w) = T(<SELF>,w)



A\, IS undecidable

Proof by contradiction
Assume H decides Ay,

We construct B as follows
— B(W) =
e Obtain own description <B>
e Run H(<B>,w)
e Do the opposite of what H says
— Thatis B rejects if H(<B>,w) accepts
— B accepts if H(<B>,w) rejects
But B does the opposite of B it H is to be believed, so it
must be the case that H cannot be deciding A;,



Minimal Machines

e [f Mis TM, then we say the length of the
description <M> is the number of (tape)
symbols in the string describing M.

 We say that M is minimal, if there is no
equivalent TM to M that has a shorter
description

 Define the language
— MINq, = { <M> | M is @ minimal TM}



MIN-,, is not Turing recognizable

Assume some TM, E, enumerates the MIN-,,, and obtain
a contradiction.

Let C(w) =

— Obtain (via recursion theorem) own description <C>

— Run E until a machine D appears with a longer description
than that of C

— Simulate D on input w
There must be a D (why?) D has length greater than C,

but C behaves just like D. So D cannot be minimal,
because C has smaller length.

So E can’t enumerate MIN;,,s0 our assumption must be
false.



Fixed Points

e LetT: 2* —> 2* be a computable function.
 Then there exists a TM F for which T(<F>)
describes a TM equivalent to F

— If the input to T isn’t a proper TM encoding then T
should return a TM that immediately rejects all
strings



Proof

Let F be the following TM

F(W) =

— Obtain (via recursion theorem) own description <F>
— Compute T(<F>) to obtain description <G>

— Simulate G onw

Since F simulates G, they are clearly the same
But F=T(<F>) =G



	The Recursion Theorem
	Self replication
	The robot factory
	Can we write a program?
	Consider the Haskell Program
	Copy
	self2
	Technical fix
	The recursion theorem
	From Haskell to TMs
	The copy component
	The self reproducing TM
	What does B look like?
	Why?
	Recursion Theorem
	Terminology
	A very simple example
	ATM is undecidable
	Minimal Machines
	MINTM is not Turing recognizable
	Fixed Points
	Proof

