
The Recursion Theorem

Sipser – pages 217- 224

Self replication

• Living things are machines
• Living things can self-reproduce
• Machines cannot self reproduce

• Are these things all true?

The robot factory

• Suppose there exits a robot factory that can
make things

• For example we program the factory to make
cars.

• But cars are simpler than robot factories, so
this seems reasonable.

• Can we program the robot factory to make
robot factories?

Can we write a program?

• self x = …

• Such that when we run self on any input we get
the description of self as output?

• This problem is related to the robot factory
dilema – Can machines (programs, Turing
Machines) encode enough information to
reproduce their own descriptions.

• The answer is yes!

How do putStr and
print differ

Consider the Haskell Program

copy s = putStr s >> print s

self2 x = copy "self2 x = copy "

*Main> self2 5

self2 x = copy "self2 x = copy "

A program like this is called a Quine,
this is one of the smallest Quines I
know of, but it can be done in any

language.

Copy

• copy s = putStr s >> print s

• Copy just makes two copies of its input.
• One where the string is not quoted, and the

other where the string is quoted.

self2

• self2 x = copy "self2 x = copy "

• Self2 just applies “copy” to a string that forms
the body of everything upto the string.

Technical fix

copy s = putStr s >> print s

self2 x = copy "self2 x = copy "
• Some will claim that self2 isn’t really self

reproducing because it does not reproduce the
code for copy. For such skeptics

self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) "

The recursion theorem

• The recursion theorem states that some
Turing Machines can reproduce their own
descriptions

• It is implied that we can turn any TM into an
equivalent one that has this property.

From Haskell to TMs

• Our Haskell program had two components
self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) "

A. A program that returned that combined the string

it was given. Once quoted, once not
 (\s -> putStr s >> print s)

B. A program that always returned a constant string .
"self x = (\\s -> putStr s >> print s) “

• To translate our results to TM’s we will need similar
components

The copy component

• Q (w)
1. Construct the following Turing Machine Pw

1. Pw(x) = on any input x
1. Erase the input
2. Write w on the tape
3. Halt

2. Output <Pw>

The self reproducing TM

• The TM SELF comes in 2 parts A and B
– We want SELF to print out <SELF> =<AB>
– By the way TMs run we want A to run first, the to

pass control to B. The output of A is on the tape
when B starts

– When A runs, it leaves a description of B on the
tape. This is easy as we can use PB by essentially
defining A to be Q(B)

What does B look like?

• B (<M>)
– Compute q(<M>)
– Combine result with <M> (already on tape) to

make a complete TM
– Leave this complete TM on tape and Halt.

– Compare with

self x = (\s -> putStr s >> print s) "self x = (\\s -> putStr s >> print s) "

Why?

• The recursion theorem says we can implement
self referential programs in any sufficiently
strong programming languages.

• Any program can refer to its own description!

• Not only can it obtain its own description, it
can use this description to compute with!

Recursion Theorem

• Let T be a TM that computes a function from
Σ* × Σ* → Σ*.

• There exists another TM, R, where for every w
– R(w) = T(<R>,w)

– There is an equivalent Turing Machine that

computes the same result given just w, but we can
program T as if it had access to R’s description!

Terminology

• When describing a TM, M, one may include
the words “obtain own description <M>” in
the informal description of how M operates.

• The machine might do things like
– Print out M
– Count the number of states in M
– Simulate M

A very simple example

• SELF(x) =
– Obtain via recursion theorem, its own description

<SELF>
– Print <SELF>

• The recursion theorem says given the TM T

– T(<M>,w) = Print <W> and Halt
• We can obtain SELF above for free
• SELF(w) = T(<SELF>,w)

ATM is undecidable

• Proof by contradiction
• Assume H decides ATM

• We construct B as follows
– B(w) =

• Obtain own description
• Run H(,w)
• Do the opposite of what H says

– That is B rejects if H(,w) accepts
– B accepts if H(,w) rejects

• But B does the opposite of B it H is to be believed, so it
must be the case that H cannot be deciding ATM

Minimal Machines

• If M is TM, then we say the length of the
description <M> is the number of (tape)
symbols in the string describing M.

• We say that M is minimal, if there is no
equivalent TM to M that has a shorter
description

• Define the language
– MINTM = { <M> | M is a minimal TM}

MINTM is not Turing recognizable
• Assume some TM, E, enumerates the MINTM, and obtain

a contradiction.
• Let C(w) =

– Obtain (via recursion theorem) own description <C>
– Run E until a machine D appears with a longer description

than that of C
– Simulate D on input w

• There must be a D (why?) D has length greater than C,
but C behaves just like D. So D cannot be minimal,
because C has smaller length.

• So E can’t enumerate MINTM so our assumption must be
false.

Fixed Points

• Let T: Σ* → Σ* be a computable function.
• Then there exists a TM F for which T(<F>)

describes a TM equivalent to F
– If the input to T isn’t a proper TM encoding then T

should return a TM that immediately rejects all
strings

Proof

• Let F be the following TM
• F(W) =

– Obtain (via recursion theorem) own description <F>
– Compute T(<F>) to obtain description <G>
– Simulate G on w

• Since F simulates G, they are clearly the same
• But F = T(<F>) = G

	The Recursion Theorem
	Self replication
	The robot factory
	Can we write a program?
	Consider the Haskell Program
	Copy
	self2
	Technical fix
	The recursion theorem
	From Haskell to TMs
	The copy component
	The self reproducing TM
	What does B look like?
	Why?
	Recursion Theorem
	Terminology
	A very simple example
	ATM is undecidable
	Minimal Machines
	MINTM is not Turing recognizable
	Fixed Points
	Proof

