
Turing Machines 

Sipser pages  137-147 



Intro to Turing Machines 

• A Turing Machine (TM) has finite-state control (like PDA), and 
an infinite read-write tape. The tape serves as both input and 
unbounded storage device. 
 

• The tape is divided into cells, and each cell holds one symbol 
from the tape alphabet.  
 

• There is a special blank symbol B. At any instant, all but 
finitely many cells hold B.  
 

• Tape head sees only one cell at any instant. The contents of 
this cell and  the current state determine the next move of the 
TM. 
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Moves 

• A move consists of:  
– replacing the contents of the scanned cell 
– repositioning of the tape head to the nearest cell 

on the left,  or on the right 
– changing the state 

 
• The input alphabet  is a subset of the tape alphabet. Initially, 

the tape holds a string of input symbols (the input), starting 
on the left of the tape, with in infinite sequence of blanks to 
the right (after the input). The initial position of the head is 
the leftmost symbol. 
 



Formal Definition 
• A TM is a 7-tuple M=(Q,Σ,Γ,δ,q0,qaccept,qreject), where 

 
1.  Q is a finite set of states  

 
2. Σ is the input alphabet (does not contain B the blank symbol) 

 
3.  Γ is the tape alphabet, where 

1. Σ ⊆ Γ    (the input alphabet is a subset of the tape alphabet) 
2. B  ∈Γ    (Blank is in the tape alphabet) 

 
4. q0        ∈ Q  is the start state 

 
5. Qaccept ∈ Q  is the accepting state 

 
6. Qreject  ∈ Q  is the rejecting state 

 
7.  δ : Q × Γ → Q × Γ × {L,R} is a partial function. 

 The value of δ (q,X) is either undefined, or is a triple consisting of the new state,  
the  replacement symbol, and direction (left/right) for the head motion. 

 
 



Example 

• Here is a TM that checks its third symbol is 0, 
accepts if so, and runs forever, if not (note it 
never rejects). 
 

• M=({p,q,r,s,t,d},{0,1,},{0,1,B},p,s,d) 
 

• δ(p,X) = (q,X,R)    for X=0,1 
• δ(q,X) = (r,X,R)     for X=0,1 
• δ(r,0) = (s,0,L)  
• δ(r,1) = (t,1,R)  
• δ(t,X) = (t,X,R)      for X=0,1,B 

 
 



δ(p,X) = (q,X,R)    for X=0,1 
δ(q,X) = (r,X,R)     for X=0,1 
δ(r,0) = (s,0,L)  
δ(r,1) = (t,1,R)  
δ(t,X) = (t,X,R)      for X=0,1,B 
 

Transisition Diagrams for TM 

• Pictures of TM can be 
drawn like those for 
PDA's. Here's the TM 
of the example 
below.  
 



Implicit Assumptions 

• Input is placed on tape in contiguous block of 
cells (all the way to the left) 

• All other cells to the right are blank:  ‘B’ 
• Tape head positioned at Left of input block 
• There is one start state 

 
• The text uses a single accepting and rejecting 

state, an alternative is to have many such states. 
These are equivalent, why? 



Example 2:  { anbm  | n,m ≥ 0} 

states         = 0,1,H 
tape alphabet  = a,b,^ 
input alphabet = a,b 
start          = 0 
blank          = ‘^' 
accepting          = H 
rejecting =  R 
delta =   (0,^,^,S,H) 
               (0,a,a,R,0) 
              (0,b,b,R,1) 
               (1,b,b,R,1) 
              (1,^,^,S,H) 



Example 3:  { anbncn  | n ≥ 0} 
delta = 
   (0,a,X,R,1) Replace a by X and scan right 
   (0,Y,Y,R,0) Scan right over Y 
   (0,Z,Z,R,4) Scan right over Z, but make final check 
   (0,^,^,S,H) Nothing left, so its success 
   (1,a,a,R,1) Scan right looking for b, skip over a 
   (1,b,Y,R,2) Replace b by y, and scan right 
   (1,Y,Y,R,1) scan right over Y 
   (2,c,Z,L,3) Scan right looking for c, replacxe it by Z 
   (2,b,b,R,2) scan right skipping over b 
   (2,Z,Z,R,2) scan right skipping over Z 
   (3,a,a,L,3) scan left looking for X, skipping over a 
   (3,b,b,L,3) scan left looking for X, skipping over b 
   (3,X,X,R,0) Found an X, move right one cell 
   (3,Y,Y,L,3) scan left over Y 
   (3,Z,Z,L,3) scan left over Z 
   (4,Z,Z,R,4) Scan right looking for ^, skip over Z 
   (4,^,^,S,H) Found what we’re looking for, success! 

tape alphabet  = a,b,c,^,X,Y,Z 
input alphabet = a,b,c 
start          = 0 
blank          = ‘^ ' 
final          = H 
 



aabbcc 
Xabbcc 
XaYbcc 
XaYbZc 
XXYbZc 
XXYYZc 
XXYYZZ 



Details 
• There are 3 level of details we might use to describe TM’s 

 
1. Give the complete formal description  

• the states, alphabet, transition, etc 
2. Implementation description 

• Partition the states into stages, Use English to describe how 
each stage move the head and stores data on the tape 

• Each stage performs one function. 
• Describe how we move between stages 
• No details of states or transition function 

3. High level description 
• Use English to describe an algorithm 
• Don’t mention how to describe tape or moves 
 



Example Implementation level 

• { 02^n  | n ≥ 0} 
• Stages 

1. Sweep left to right across the tape. Crossing off 
every other 0 

2. If in stage 1, the tape conatined a single 0, accept 
3. If in stage 1, the tape contained more than a single 

0, and the number of 0’s was odd, reject 
4. Return the head to the left-hand end of the tape 
5. Goto stage 1. 



What is important 

• We seek to convince the student that Turing 
machines are a powerful tool to describe 
algorithms 

• The full set of details is often too complex to 
describe completely, because the details do 
not add to our understanding. 

• But, we could use our high level descriptions 
to complete the formal description if we 
desired. 



Turing machines with output 

• A Turing machine can compute an output by 
leaving an answer on the tape when it halts. 
 

• We must specify the form of the output when 
the machine halts. 



Adding two to a number in unary 
TM   Q      {0, 1, H, R} 
     Sigma  {1} 
     Gamma  {1, ^} 
     Delta  0 1 ->  (1, R, 0) 
            0 ^ ->  (1, R, 1) 
            1 ^ ->  (1, S, H) 
     q0     0 
     Accept H 
     Reject R 
     Blank  ^ 



Adding 1 to a Binary Number 
TM   Q      {0, 1, 2, H, R} 
     Sigma  {1, 0, ^} 
     Gamma  {1, 0, ^} 
     Delta  0 0 ->  (0, R, 0) 
                0 1 ->  (1, R, 0) 
                0 ^ ->  (^, L, 1) 
               1 0 ->  (1, L, 2) 
               1 1 ->  (0, L, 1) 
               1 ^ ->  (1, S, H) 
               2 0 ->  (0, L, 2) 
               2 1 ->  (1, L, 2) 
               2 ^ ->  (^, R, H) 
     q0     0 
     Accept H 
     Reject R 
     Blank  ^ 

^1011^ 
^1010^ 
^1000^ 
^1100^ 



An equality Test 

delta = 
   (0,1,^,R,1) 
   (0,^,^,R,4) 
   (0,#,#,R,4) 
   (1,1,1,R,1) 
   (1,^,^,L,2) 
   (1,#,#,R,1) 
   (2,1,^,L,3) 
   (2,#,1,S,H) 
   (3,1,1,L,3) 
   (3,^,^,R,0) 
   (3,#,#,L,3) 
   (4,1,1,S,H) 
   (4,^,^,S,H) 
   (4,#,#,R,4) 

states         = 0,1,2,3,4,H 
tape alphabet  = 1,0,#,^ 
input alphabet = 1,0,# 
start          = 0 
blank          = ‘^' 
final          = H 



Configurations   (Sipser pg. 140) 

• configurations for TM's are strings of the form  α q β , where  
α, β ∈ Γ* and q ∈ Q. (Assume that Q and  Γ* are disjoint sets, 
guaranteeing unique parsing of configurations.)  

• The string  α  represents the tape contents to the left of the 
head.  

• The string  β  represents the non-blank tape contents to the 
right of the head, including the  currently scanned cell. 
 

• Adding or deleting a few blank symbols at the beginning or 
end of an confiuration results in an equivalent configuartion. 
Both represent the same instant in the execution of a TM. 
 



Sipser terminology 

• Other authors call configurations  
instantaneous descriptions 
 

• Starting Configuration 
• Accepting Configuration 
• Rejecting Configuration 

Both of these 
are halting 

configurations 



Relating configurations 

• TM's transitions induce the relation |- between configurations.  
• Let    ω =X1. . . Xi-1 q Xi . . . Xk be an configuration.  

 
• If  δ(q,Xi) is undefined, then there are no configurations  ω ' 

such that  ω |- ω '.  
 

• If  δ(q,Xi)=(p,Y,R) then 
         ω |- ω ' holds for  ω ' = X1. . . Xi-1 Y p Xi+1. . . Xk   

 
• Similarly, if  δ(q,X_i)=(p,Y,L)  
     then  ω |- ω’ holds for  ω’ =X1. . . pXi-1YXi+1 . . . Xk   
 
• When ω |- ω’      Sipser says:      “  ω  yields ω’   ” 



Note 

• If, in the first case, we have i=k, (that is we are at the 
end of the non-blank portion of the tape to the right) 
then we need to use the equivalent representation  
 

•  ω = X1 . . . Xk-1 q Xk B  
 

• for our formula to make sense. Similarly, we add a B 
to the beginning of  ω  whenever necessary. 
 



Example 
• Here is the sequence of 

configurations of our example 
machine, showing its execution 
with the given input 0101: 
 

•  p0101 |- 0q101 |-01r01 |- 0s101 
 

• The machine halts, since there are 
no moves from the state s.  When 
the input is 0111, the machine 
goes forever, as follows: 
 

• p0111 |- 0q111 |- 01r11 |- 011t1 
|- 0111t |- 0111Bt |- 0111BBt |- … 



The Language of a TM 

• We define the language of the TM M to be the set L(M) of all 
strings w ∈ Σ*   
 

• such that:     Q0 w |-* α qaccept β  
• for any  α, β   

 
• Languages accepted by TM's are call recursively enumerable  

(RE).  Sipser calls this  Turing-recognizable 
 

• Example. For our example machine, we have L(M)= 
(0+1)(0+1)0(0+1)* 
 

• If the machine recognizes some language, and also halts for all 
inputs. We say the language is Turing-decidable. 



Acceptance by Halting 

• Some text books define an alternative way of defining a 
language associated with a TM M. (But not Sipser, though 
the idea is still interesting). 

• We denote it H(M), and it consists of strings  that cause 
the TM to halt. Precisely, a string w ∈ Σ* belongs to H(M)  

• iff  q0 w |-* α p X β 
• where  δ(p,X) is undefined.   

 
• Example. For our example machine, we have  
• H(M)= ε + 0 + 1 + (0+1)(0+1) + (0+1)(0+1)0(0+1)* 



Equivalence of  
Acceptance by Final State and Halting 

• How would we prove such an equivalence? 
 

• 1. Construct a TM that accepts by Halting from 
an ordinary one. 

• 2. Construct an ordinary TM from one that 
accepts by halting. 
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