
Turing Machines

Sipser pages 137-147

Intro to Turing Machines

• A Turing Machine (TM) has finite-state control (like PDA), and
an infinite read-write tape. The tape serves as both input and
unbounded storage device.

• The tape is divided into cells, and each cell holds one symbol
from the tape alphabet.

• There is a special blank symbol B. At any instant, all but
finitely many cells hold B.

• Tape head sees only one cell at any instant. The contents of
this cell and the current state determine the next move of the
TM.

1 1 0 2 B B B B B B B

The tape extends
to infinity on the

right with all
Blanks (B)

state 0 1 2

1 L,2,3

2

3

4

State = 1

…

Moves

• A move consists of:
– replacing the contents of the scanned cell
– repositioning of the tape head to the nearest cell

on the left, or on the right
– changing the state

• The input alphabet is a subset of the tape alphabet. Initially,

the tape holds a string of input symbols (the input), starting
on the left of the tape, with in infinite sequence of blanks to
the right (after the input). The initial position of the head is
the leftmost symbol.

Formal Definition
• A TM is a 7-tuple M=(Q,Σ,Γ,δ,q0,qaccept,qreject), where

1. Q is a finite set of states

2. Σ is the input alphabet (does not contain B the blank symbol)

3. Γ is the tape alphabet, where

1. Σ ⊆ Γ (the input alphabet is a subset of the tape alphabet)
2. B ∈Γ (Blank is in the tape alphabet)

4. q0 ∈ Q is the start state

5. Qaccept ∈ Q is the accepting state

6. Qreject ∈ Q is the rejecting state

7. δ : Q × Γ → Q × Γ × {L,R} is a partial function.

 The value of δ (q,X) is either undefined, or is a triple consisting of the new state,
the replacement symbol, and direction (left/right) for the head motion.

Example

• Here is a TM that checks its third symbol is 0,
accepts if so, and runs forever, if not (note it
never rejects).

• M=({p,q,r,s,t,d},{0,1,},{0,1,B},p,s,d)

• δ(p,X) = (q,X,R) for X=0,1
• δ(q,X) = (r,X,R) for X=0,1
• δ(r,0) = (s,0,L)
• δ(r,1) = (t,1,R)
• δ(t,X) = (t,X,R) for X=0,1,B

δ(p,X) = (q,X,R) for X=0,1
δ(q,X) = (r,X,R) for X=0,1
δ(r,0) = (s,0,L)
δ(r,1) = (t,1,R)
δ(t,X) = (t,X,R) for X=0,1,B

Transisition Diagrams for TM

• Pictures of TM can be
drawn like those for
PDA's. Here's the TM
of the example
below.

Implicit Assumptions

• Input is placed on tape in contiguous block of
cells (all the way to the left)

• All other cells to the right are blank: ‘B’
• Tape head positioned at Left of input block
• There is one start state

• The text uses a single accepting and rejecting

state, an alternative is to have many such states.
These are equivalent, why?

Example 2: { anbm | n,m ≥ 0}

states = 0,1,H
tape alphabet = a,b,^
input alphabet = a,b
start = 0
blank = ‘^'
accepting = H
rejecting = R
delta = (0,^,^,S,H)
 (0,a,a,R,0)
 (0,b,b,R,1)
 (1,b,b,R,1)
 (1,^,^,S,H)

Example 3: { anbncn | n ≥ 0}
delta =
 (0,a,X,R,1) Replace a by X and scan right
 (0,Y,Y,R,0) Scan right over Y
 (0,Z,Z,R,4) Scan right over Z, but make final check
 (0,^,^,S,H) Nothing left, so its success
 (1,a,a,R,1) Scan right looking for b, skip over a
 (1,b,Y,R,2) Replace b by y, and scan right
 (1,Y,Y,R,1) scan right over Y
 (2,c,Z,L,3) Scan right looking for c, replacxe it by Z
 (2,b,b,R,2) scan right skipping over b
 (2,Z,Z,R,2) scan right skipping over Z
 (3,a,a,L,3) scan left looking for X, skipping over a
 (3,b,b,L,3) scan left looking for X, skipping over b
 (3,X,X,R,0) Found an X, move right one cell
 (3,Y,Y,L,3) scan left over Y
 (3,Z,Z,L,3) scan left over Z
 (4,Z,Z,R,4) Scan right looking for ^, skip over Z
 (4,^,^,S,H) Found what we’re looking for, success!

tape alphabet = a,b,c,^,X,Y,Z
input alphabet = a,b,c
start = 0
blank = ‘^ '
final = H

aabbcc
Xabbcc
XaYbcc
XaYbZc
XXYbZc
XXYYZc
XXYYZZ

Details
• There are 3 level of details we might use to describe TM’s

1. Give the complete formal description

• the states, alphabet, transition, etc
2. Implementation description

• Partition the states into stages, Use English to describe how
each stage move the head and stores data on the tape

• Each stage performs one function.
• Describe how we move between stages
• No details of states or transition function

3. High level description
• Use English to describe an algorithm
• Don’t mention how to describe tape or moves

Example Implementation level

• { 02^n | n ≥ 0}
• Stages

1. Sweep left to right across the tape. Crossing off
every other 0

2. If in stage 1, the tape conatined a single 0, accept
3. If in stage 1, the tape contained more than a single

0, and the number of 0’s was odd, reject
4. Return the head to the left-hand end of the tape
5. Goto stage 1.

What is important

• We seek to convince the student that Turing
machines are a powerful tool to describe
algorithms

• The full set of details is often too complex to
describe completely, because the details do
not add to our understanding.

• But, we could use our high level descriptions
to complete the formal description if we
desired.

Turing machines with output

• A Turing machine can compute an output by
leaving an answer on the tape when it halts.

• We must specify the form of the output when
the machine halts.

Adding two to a number in unary
TM Q {0, 1, H, R}
 Sigma {1}
 Gamma {1, ^}
 Delta 0 1 -> (1, R, 0)
 0 ^ -> (1, R, 1)
 1 ^ -> (1, S, H)
 q0 0
 Accept H
 Reject R
 Blank ^

Adding 1 to a Binary Number
TM Q {0, 1, 2, H, R}
 Sigma {1, 0, ^}
 Gamma {1, 0, ^}
 Delta 0 0 -> (0, R, 0)
 0 1 -> (1, R, 0)
 0 ^ -> (^, L, 1)
 1 0 -> (1, L, 2)
 1 1 -> (0, L, 1)
 1 ^ -> (1, S, H)
 2 0 -> (0, L, 2)
 2 1 -> (1, L, 2)
 2 ^ -> (^, R, H)
 q0 0
 Accept H
 Reject R
 Blank ^

^1011^
^1010^
^1000^
^1100^

An equality Test

delta =
 (0,1,^,R,1)
 (0,^,^,R,4)
 (0,#,#,R,4)
 (1,1,1,R,1)
 (1,^,^,L,2)
 (1,#,#,R,1)
 (2,1,^,L,3)
 (2,#,1,S,H)
 (3,1,1,L,3)
 (3,^,^,R,0)
 (3,#,#,L,3)
 (4,1,1,S,H)
 (4,^,^,S,H)
 (4,#,#,R,4)

states = 0,1,2,3,4,H
tape alphabet = 1,0,#,^
input alphabet = 1,0,#
start = 0
blank = ‘^'
final = H

Configurations (Sipser pg. 140)

• configurations for TM's are strings of the form α q β , where
α, β ∈ Γ* and q ∈ Q. (Assume that Q and Γ* are disjoint sets,
guaranteeing unique parsing of configurations.)

• The string α represents the tape contents to the left of the
head.

• The string β represents the non-blank tape contents to the
right of the head, including the currently scanned cell.

• Adding or deleting a few blank symbols at the beginning or
end of an confiuration results in an equivalent configuartion.
Both represent the same instant in the execution of a TM.

Sipser terminology

• Other authors call configurations
instantaneous descriptions

• Starting Configuration
• Accepting Configuration
• Rejecting Configuration

Both of these
are halting

configurations

Relating configurations

• TM's transitions induce the relation |- between configurations.
• Let ω =X1. . . Xi-1 q Xi . . . Xk be an configuration.

• If δ(q,Xi) is undefined, then there are no configurations ω '

such that ω |- ω '.

• If δ(q,Xi)=(p,Y,R) then
 ω |- ω ' holds for ω ' = X1. . . Xi-1 Y p Xi+1. . . Xk

• Similarly, if δ(q,X_i)=(p,Y,L)
 then ω |- ω’ holds for ω’ =X1. . . pXi-1YXi+1 . . . Xk

• When ω |- ω’ Sipser says: “ ω yields ω’ ”

Note

• If, in the first case, we have i=k, (that is we are at the
end of the non-blank portion of the tape to the right)
then we need to use the equivalent representation

• ω = X1 . . . Xk-1 q Xk B

• for our formula to make sense. Similarly, we add a B
to the beginning of ω whenever necessary.

Example
• Here is the sequence of

configurations of our example
machine, showing its execution
with the given input 0101:

• p0101 |- 0q101 |-01r01 |- 0s101

• The machine halts, since there are
no moves from the state s. When
the input is 0111, the machine
goes forever, as follows:

• p0111 |- 0q111 |- 01r11 |- 011t1
|- 0111t |- 0111Bt |- 0111BBt |- …

The Language of a TM

• We define the language of the TM M to be the set L(M) of all
strings w ∈ Σ*

• such that: Q0 w |-* α qaccept β
• for any α, β

• Languages accepted by TM's are call recursively enumerable

(RE). Sipser calls this Turing-recognizable

• Example. For our example machine, we have L(M)=
(0+1)(0+1)0(0+1)*

• If the machine recognizes some language, and also halts for all
inputs. We say the language is Turing-decidable.

Acceptance by Halting

• Some text books define an alternative way of defining a
language associated with a TM M. (But not Sipser, though
the idea is still interesting).

• We denote it H(M), and it consists of strings that cause
the TM to halt. Precisely, a string w ∈ Σ* belongs to H(M)

• iff q0 w |-* α p X β
• where δ(p,X) is undefined.

• Example. For our example machine, we have
• H(M)= ε + 0 + 1 + (0+1)(0+1) + (0+1)(0+1)0(0+1)*

Equivalence of
Acceptance by Final State and Halting

• How would we prove such an equivalence?

• 1. Construct a TM that accepts by Halting from
an ordinary one.

• 2. Construct an ordinary TM from one that
accepts by halting.

	Turing Machines
	Intro to Turing Machines
	Slide Number 3
	Moves
	Formal Definition
	Example
	Slide Number 7
	Implicit Assumptions
	Example 2: { anbm | n,m ≥ 0}
	Example 3: { anbncn | n ≥ 0}
	Slide Number 11
	Details
	Example Implementation level
	What is important
	Turing machines with output
	Adding two to a number in unary
	Adding 1 to a Binary Number
	An equality Test
	Configurations (Sipser pg. 140)
	Sipser terminology
	Relating configurations
	Note
	Example
	The Language of a TM
	Acceptance by Halting
	Equivalence of �Acceptance by Final State and Halting

