This worksheet is meant to explore the ideas behind the CFL-pumping lemma. We will not use the lemma to prove anything in this worksheet. First consider the conditions that the lemma sets out: If L is CF, than every string w in L can be written as $x u^{i} y v^{i} z \in L$

1. $u v \neq \varepsilon$ ($|u v|>0$, which means that at least one of u or v is not empty)
2. And for every $i \geq 0 \quad x^{i} y v^{i} z \in L$

For each grammar below (where S is the start symbol) do all 6 of the following:

1. Find a string w in L. Write it down.
2. Write the string as xuyvz. Identify each of the substrings x, u, y, v, z of w
3. Draw a parse tree for w.
4. Draw a parse tree for $\mathrm{xu}^{0} \mathrm{yv}^{0} \mathrm{z}$
5. Draw a parse tree for ${x u^{2} y v^{2} z}^{2}$
6. Find the smallest constant, N (i.e. 4, 7, 24, you decide) such that for every string longer than N, the grammar has a pump.

Grammar 1, over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
\begin{aligned}
& \mathrm{S}->\mathrm{a} T \mathrm{XTc} \\
& \mathrm{~T}->\mathrm{a} \\
& \mathrm{~T}->\mathrm{b} \\
& \mathrm{X} \rightarrow \mathrm{~b} \mathrm{c}
\end{aligned}
$$

Grammar 2, over the alphabet $\{0,1\}$

$$
\begin{aligned}
& S->X S \\
& S->0 \\
& X->1
\end{aligned}
$$

Grammar 3, over the alphabet $\{\mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{Q}\}$
S -> S M
S -> X

$$
X->N P
$$

$$
\text { X }->Q
$$

